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1. Phys. A: Math. Gen. 17 (1994) L751-L755. Prinled in the UK 

LETTER TO THE EDITOR 

Supersymmetric classical mechanics 

Georg Junkefi and Stephan Matthiesent. 
lnstitut f"r Theoretische Physit Universifat Erlangen-Nhberg. Staudtsbasse 7.91058 
Erlangen, Germany 

Received 5 August 1994 

Abstract We study the classical properties of a supersymmehic system which is ofen used 
as a model for supersymmetric quantum mechanics. It is found that the classical dynamics 
of the bosonic as well as the fermionic degrees of freedom is fully described by a s o d e d  
quasi-classical solution. We also comment an the impolrance of this quasiclassical solution in 
the semi-classical treatment of ule supersymmehic quantum model. 

In 1976, Nicolai [ l ]  introduced supersymmetric quantum mechanics as an example for the 
occurrence of supersymmetry (SUSY) in non-relativistic quantum mechanics. Independently, 
in 1981, Witten [ZI also suggested SUSY quantum mechanics as a simplified model for the 
study of the spontaneous SUSY breaking mechanism. The model which has been studied 
[ 1-31 is characterized by the following Lagrangian 

L := 1x2 2 - +V2(X) + ;($+ - $*) - V'(X)+*,. (1) 

In the above, x denotes a bosonic degree of freedom and, hence, is an even Grassmann 
number. In contrast to this, @ and 4 denote fermionic degrees of freedom and, therefore, 
are odd Grassmann numbers, which means that [@.$I = 0 and @' = 0 = q2. The 
real-valued function V is the so-called superpotential. The Lagrangian (1) describes the 
supersymmetrized version of a (0 + 1)-dimensional field theory. In other words, it stems 
from a supersymmetric field theory formulated in a superspace spanned by the time variable 
t and two Grassmann variables E and B [1,4,5]. As a consequence, the dynamical system 
defined by (1) is invariant under the SUSY transformations 

8 x ( t )  = & @ ( t )  + $ ( t ) B  

s @ ( t )  = -(ii + V(x))B 

sq(t) = ( i i  - V(X))&.  

(2) 

The invariance of the system characterized by (1) under the SUSY transformations (2) is 
obvious as 

(3) 
I d  
2 dt 

SL = -+(i - iv)&+ + ( j :  + iv)$B). 
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Hence, (2) leads to a gauge-equivalent Lagrangian and, therefore, to equations of motion 
identical to those obtained from the original Lagrangian (1). 

The standard model of SUSY quantum mechanics [Z] is found by quantizing the system 
(I), either within the canonical approach [3-51 or by the path-integral formalism [3,4]. 
The increasing interest in this SUSY quantum model has many reasons. For recent reviews, 
see [6,7]. As a particular motivation, let us mention the observation that SUSY inspired 
semi-classical approximations. the so-called CBC formula [8-1 I], in the case of unbroken 
sUSY and its modification [9-12] for broken SUSY, yield exact energy eigenvalues for the 
so-called shape-invariant potentials 1131. 

In contrast to SUSY quantum mechanics, which has been well studied during the last ten 
years, SUSY classical mechanics has, to our knowledge, never been investigated in detaili. It 
is the main purpose of this letter to present basic results of the classical system characterized 
by the Lagrangian (1). In particular, we will show that the classical solutions for the bosonic 
as well as the fermionic degrees of freedom are completely described by the dynamics of a 
real-valued quasi-classical degree of freedom. 

The classical equations of motion, which can be derived from the Lagrangian (1). read: 

x = -  .‘ V(x)V’(x) - V”(x)$$ (6) 

where the prime and dot denote the derivative with respect to x and f ,  respectively. The 
first-order differential equations for the fermionic degrees of freedom can immediately be 
integrated. With initial conditions +(O) =: q o  and J ( 0 )  =: $0, the solutions read: 

I 

$(t) = $oexp [ iJ(d‘dr V’(x(s))} +(f) = qoexp [ - ii ds  V ’ ( x ( r ) ) }  (7) 

where x(f) denotes the (unknown) solution of (6). Let us note that the solutions (7) imply 
that $(r)+(r) = &@o is a constant and, therefore, equation (6) simplifies to 

i = -V(x)V’(x) - v”(x)$oqolo. (8) 

As the superpotential V is assumed to be real-valued, the bosonic degree of freedom x ( t ) .  
which is an even Grassmann number, necessarily has the following form: 

x ( r )  =: -w) + q(o$o+o (9) 

where x,&) and q ( t )  are real-valued functions of time. We will call x&) the quasi- 
classical solution in order to differentiate it from the full classical solution x(f) which 
contains the $O@O term. The classical solution x ( f )  and the quasi-classical solution xqc(r) 
coincide only for the special initial condition $0 = 0 = @o. It is also worth mentioning 
that in the fermionic solutions (7), one may replace x ( 7 )  by xqc(r)  because of (9). 

Multiplication of (8) by i and integration leads to the energy conservation 

E = $2 t iVZ(X) t V‘(x)$& (10) 

t A brief and inmmplete discussion has been given in appndix C of [41, 
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where E is a constant even Grassmann number. The ansatz (9) together with E =: 
E + F&+o (E, F E W) results in 

Xz 9c = 2E - VZ(xqc) (11) 

The last equation which determines q( t )  can also be solved exactly: 

where q(0) is a constant of integration. Again we find, as for the fermionic degrees of 
freedom, that q ( t )  is expressible in terms of the quasi-classical solution x,,(t) determined 
by (11). Let us note that the singularity of the integral in (13) near the turning points 
of the quasi-classical path is precisely cancelled by its prefactor, since iq&) vanishes at 
these points. Hence, q ( t )  remains finite for all t > 0. Let us also note that even for the 
initial condition q(0) = 0, we have, in general, q( t )  # 0 for t > 0. In other words, even 
assuming the classical solution to be initially real, x(0) E W will, in general, become a 
Grassmann-valued quantity. It is only in the special case V'(x) = F ,  that is, for a harmonic 
superpotential, where a real x ( 0 )  remains real for ever. 

Let us now discuss some properties of the quasi-classical solution xqc(f). The equation 
of motion ( 1  1) for the quasi-classical path can be obtained from a quusi-classical Lagrangian 
defined by 

L 9c .- .- L i z  z - fvZ(x) = f (i rt iV(x))' i V ( x ) i .  (14) 

The last equality shows that this Lagrangian is gauge equivalent tot 

L,"c := f(i rt iV(x))*. (15) 

The canonical momenta obtained from Lagrangians i$ are 

and, surprisingly, coincide with the generators of the SUSY transformation (2) of the 
fermionic degrees of freedom 

~ + ( t )  = -it-z s $ ( t )  = it+&. (17) 

It is also obvious that the energy E of the quasi-classical solution can be expressed by 
E = ft't-. As a consequence, we have the relation 

{*/fi = (tT/v%?)-' E > 0. (18) 

t The d e r  should not be confused by the complex gauge transformation. This defecf un be avoided by 
introducing Euclidean time. 
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As an aside, we mention that for E = 0, the quasi-classical solutions are given by 
+,(I) = xx where XI are the zeros of the superpotential V ( x , )  = 0. This leads to @ ( t )  = @o, 
$ ( t )  = $0 and q ( f )  = 0. Hence, this is the only case where a non-harmonic superpotential 
will lead to purely real solutions x ( f )  = X I .  

Finally, let us comment on the role played by the quasi-classical path for the quantum 
version of model (I) .  As we have already mentioned, it has been found that the SUSY- 
inspired semi-classical quantization does provide the exact bound-state energy spectrum for 
a wide class of superpotentials. Indeed, it has recently been verified that these semi-classical 
quantization formulae can be derived via Feynman's path-integral approach [9-1 I].  The 
important step in this derivation was to evaluate the path integral in a stationary phase 
approximation about these quasi-classical paths. To be more precise, instead of making the 
full action 

(19) 

stationary, one calculates the corresponding path integral about the stationary paths of the 
quasi-classical action S, := Jdt Lqc. This result,indicates that the quasi-classical paths - (and their quadratic fluctuations) cany the most important contributions of the path integral. 

As a last indication for the dominance of these quasi-classical paths, let us mention an 
interesting result of Ezawa and Klauder [14]. These authors have shown that as long as one 
is only interested in expectation values of the bosonic variable x ( t ) ,  then the path-integral 
quantization based on the Lagrangian (1) is equivalent to that based on (15). To be more 
explicit, they showed the relationt 

1 I - .  
S := df L = dt L, t -(@@ - $@) - V ' ( X ) $ @  / / [  2 

where f*(t) is defined by (16). It should be stressed that the last path integral is of 
Gaussian type. This might be the reason for the exactness of the susy-inspired semi- 
classical approximation. The gauge transformation L, -+ .E$ is the classical analogue of 
the Nicolai map discussed by Ezawa and Klauder [14]. 
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